3,095 research outputs found

    TRANDESNF: A computer program for transonic airfoil design and analysis in nonuniform flow

    Get PDF
    The use of a transonic airfoil code for analysis, inverse design, and direct optimization of an airfoil immersed in propfan slipstream is described. A summary of the theoretical method, program capabilities, input format, output variables, and program execution are described. Input data of sample test cases and the corresponding output are given

    Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex.

    Get PDF
    A fundamental challenge in neuroscience is to understand what structure in the world is represented in spatially distributed patterns of neural activity from multiple single-trial measurements. This is often accomplished by learning a simple, linear transformations between neural features and features of the sensory stimuli or motor task. While successful in some early sensory processing areas, linear mappings are unlikely to be ideal tools for elucidating nonlinear, hierarchical representations of higher-order brain areas during complex tasks, such as the production of speech by humans. Here, we apply deep networks to predict produced speech syllables from a dataset of high gamma cortical surface electric potentials recorded from human sensorimotor cortex. We find that deep networks had higher decoding prediction accuracy compared to baseline models. Having established that deep networks extract more task relevant information from neural data sets relative to linear models (i.e., higher predictive accuracy), we next sought to demonstrate their utility as a data analysis tool for neuroscience. We first show that deep network's confusions revealed hierarchical latent structure in the neural data, which recapitulated the underlying articulatory nature of speech motor control. We next broadened the frequency features beyond high-gamma and identified a novel high-gamma-to-beta coupling during speech production. Finally, we used deep networks to compare task-relevant information in different neural frequency bands, and found that the high-gamma band contains the vast majority of information relevant for the speech prediction task, with little-to-no additional contribution from lower-frequency amplitudes. Together, these results demonstrate the utility of deep networks as a data analysis tool for basic and applied neuroscience

    Neural Latent Aligner: Cross-trial Alignment for Learning Representations of Complex, Naturalistic Neural Data

    Full text link
    Understanding the neural implementation of complex human behaviors is one of the major goals in neuroscience. To this end, it is crucial to find a true representation of the neural data, which is challenging due to the high complexity of behaviors and the low signal-to-ratio (SNR) of the signals. Here, we propose a novel unsupervised learning framework, Neural Latent Aligner (NLA), to find well-constrained, behaviorally relevant neural representations of complex behaviors. The key idea is to align representations across repeated trials to learn cross-trial consistent information. Furthermore, we propose a novel, fully differentiable time warping model (TWM) to resolve the temporal misalignment of trials. When applied to intracranial electrocorticography (ECoG) of natural speaking, our model learns better representations for decoding behaviors than the baseline models, especially in lower dimensional space. The TWM is empirically validated by measuring behavioral coherence between aligned trials. The proposed framework learns more cross-trial consistent representations than the baselines, and when visualized, the manifold reveals shared neural trajectories across trials.Comment: Accepted at ICML 202
    corecore